Some Notes concerning the Homogeneity of Boolean Algebras and Boolean Spaces
نویسنده
چکیده
In this article we consider homogeneity properties of Boolean algebras that have nonprincipal ultrafilters which are countably generated. It is shown that a Boolean algebra B is homogeneous if it is the union of countably generated nonprincipal ultrafilters and has a dense subset D such that for every a ∈ D the relative algebra B 1 a := {b ∈ B : b ≤ a} is isomorphic to B. In particular, the free product of countably many copies of an atomic Boolean algebra is homogeneous. Moreover, a Boolean algebra B is homogeneous if it satisfies the following conditions: (i) B has a countably generated ultrafilter, (ii) B is not c.c.c., and (iii) for every a ∈ B \ {0} there are finitely many automorphisms h1, . . . , hn of B such that 1 = h1(a) ∪ · · · ∪ hn(a). These results generalize theorems due to Motorov [12] on the homogeneity of first countable Boolean spaces. Finally, we provide three constructions of first countable homogeneous Boolean spaces that are linearly ordered. The first construction gives separable spaces of any prescribed weight in the interval [א0, 20 ]. The second construction gives spaces of any prescribed weight in the interval [א1, 20 ] that are not c.c.c. The third construction gives a space of weight א1 which is not c.c.c. and which is not a continuous image of any of the previously described examples.
منابع مشابه
Omega-almost Boolean rings
In this paper the concept of an $Omega$- Almost Boolean ring is introduced and illistrated how a sheaf of algebras can be constructed from an $Omega$- Almost Boolean ring over a locally Boolean space.
متن کاملFilter theory in MTL-algebras based on Uni-soft property
The notion of (Boolean) uni-soft filters in MTL-algebras is introduced, and several properties of them are investigated. Characterizations of (Boolean) uni-soft filters are discussed, and some (necessary and sufficient) conditions for a uni-soft filter to be Boolean are provided. The condensational property for a Boolean uni-soft filter is established.
متن کاملOn some classes of expansions of ideals in $MV$-algebras
In this paper, we introduce the notions of expansion of ideals in $MV$-algebras, $ (tau,sigma)- $primary, $ (tau,sigma)$-obstinate and $ (tau,sigma)$-Boolean in $ MV- $algebras. We investigate the relations of them. For example, we show that every $ (tau,sigma)$-obstinate ideal of an $ MV-$ algebra is $ (tau,sigma)$-primary and $ (tau,sigma)$-Boolean. In particular, we define an expansion $ ...
متن کاملDually quasi-De Morgan Stone semi-Heyting algebras II. Regularity
This paper is the second of a two part series. In this Part, we prove, using the description of simples obtained in Part I, that the variety $mathbf{RDQDStSH_1}$ of regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1 is the join of the variety generated by the twenty 3-element $mathbf{RDQDStSH_1}$-chains and the variety of dually quasi-De Morgan Boolean semi-Heyting algebras--...
متن کاملFUZZY OBSTINATE IDEALS IN MV-ALGEBRAS
In this paper, we introduce the notion of fuzzy obstinate ideals in MV -algebras. Some properties of fuzzy obstinateideals are given. Not only we give some characterizations of fuzzy obstinate ideals, but also bring the extension theorem of fuzzy obstinate ideal of an MV -algebra A. We investigate the relationships between fuzzy obstinate ideals and the other fuzzy ideals of an MV -algebra. We ...
متن کامل